North American gross primary productivity: regional characterization and interannual variability
نویسنده
چکیده
Seasonality and interannual variability in North American photosynthetic activity reflect potential patterns of climate variability. We simulate 24 yr (1983–2006) and evaluate regional and seasonal contribution to annual mean gross primary productivity (GPP) as well as its interannual variability. The highest productivity occurs in Mexico, the southeast United States and the Pacific Northwest. Annual variability is largest in tropical Mexico, the desert Southwest and the Midwestern corridor. We find that no single region or season consistently determines continental annual GPP anomaly. GPP variability is dependent upon soil moisture availability in lowand mid-latitudes, and temperature in the north. Soil moisture is a better predictor than precipitation as it integrates precipitation events temporally. The springtime anomaly is the most frequent seasonal contributor to the annual GPP variability. No climate mode (i.e. ENSO, NAM) can be associated with annual or seasonal variability over the entire continent. We define a region extending from the Northeast United States through the midwest and into the southwestern United States and northern Mexico that explains a significant fraction of the variability in springtime GPP. We cannot correlate this region to a single mechanism (i.e. temperature, precipitation or soil moisture) or mode of climate variability.
منابع مشابه
Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET
Gross primary productivity (GPP) is the largest and most variable component of the global terrestrial carbon cycle. Repeatable and accurate monitoring of terrestrial GPP is therefore critical for quantifying dynamics in regional-to-global carbon budgets. Remote sensing provides high frequency observations of terrestrial ecosystems and is widely used to monitor and model spatiotemporal variabili...
متن کاملRemote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set
Gross primary productivity (GPP) is the largest and most variable component of the global terrestrial carbon cycle. Repeatable and accurate monitoring of terrestrial GPP is therefore critical for quantifying dynamics in regional-to-global carbon budgets. Remote sensing provides high frequency observations of terrestrial ecosystems and is widely used to monitor and model spatiotemporal variabili...
متن کاملOzone vegetation damage effects on gross primary productivity in the United States
We apply an off-line process-based vegetation model (the Yale Interactive Terrestrial Biosphere model) to assess the impacts of ozone (O3) vegetation damage on gross primary productivity (GPP) in the United States during the past decade (1998–2007). The model’s GPP simulation is evaluated at 40 sites of the North American Carbon Program (NACP) synthesis. The ecosystem-scale model version reprod...
متن کاملThe interannual variability of Africa’s ecosystem productivity: a multi-model analysis
We are comparing spatially explicit processmodel based estimates of the terrestrial carbon balance and its components over Africa and confront them with remote sensing based proxies of vegetation productivity and atmospheric inversions of land-atmosphere net carbon exchange. Particular emphasis is on characterizing the patterns of interannual variability of carbon fluxes and analyzing the facto...
متن کاملDecreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012
Terrestrial ecosystems have continued to provide the critical service of slowing the atmospheric CO2 growth rate. Terrestrial net primary productivity (NPP) is thought to be a major contributing factor to this trend. Yet our ability to estimate NPP at the regional scale remains limited due to large uncertainties in the response of NPP to multiple interacting climate factors and uncertainties in...
متن کامل